The team

- Leader = Eddy Stappaerts
- Group = Vladimir Brajovic, Marc Christiensen, Keny Kubala, Rob Nowak, Mark Neifeld

The problem

- Conceive an imaging system with low dimensionality measurement for efficient search of the hypothesis space as to answer the "20 questions" for a task at hand. Optimize:
 - Efficiency of search
 - Reliability of each decision
 - Overall probability of success

The problem is hard because...

- It is a general ATR problem where detailed image information is aggregated into a few measurements early on. This data reduction, if not done correctly, may limit the ability for repetitive and adaptive search.
 - Detect (e.g., saliency, features)
 - Recognize (e.g., models, templates)
 - Track (e.g., low-latency, localized processing, attention)

The Concept: the What

- Missionized Imaging: optimal extraction of task-specific information. Optimize:
 - photon efficiency, speed, data load (communications + processing)
 - form factor, weight, power, ...
- Extract information: answer relevant "question" at each time increment.
- Imaging becomes the process of making measurements to facilitate a search in hypothesis space
 - optimal search (shortest time) requires access to specific measurements
 - realize these measurements with optics/electronics: what is optimal optics/electronics decomposition?

The What (cont'd)

- Optics is efficient for linear transformations/projections (static 4D).
- Electronics is efficient at nonlinear, logical, search, machine learning, local and temporal operations.
- Search process requires adaptation of optics and electronics to get the right questions answered.
- Key Issues:
 - Make relatively few measurements at each epoch -> SNR increase
 + data reduction
 - Select best questions at each epoch: fast and reliable decisions.
 - Must adapt optical/electronic transformation in response to decisions

Some "how" issues

- Sometimes a few measurements are sufficient to decide problem (task specific):
 - e.g., iris recognition requires 5 features ... measure basis directly.
- Sometimes the null space is known or discovered early:
 - e.g., only illuminate through canopy openings
- Sometimes invariances are known a priori (task specific):
 - e.g., ring-wedge detectors
- Decompose desired measurements into optics + electronics. Challenges:
 - are useful measurements decomposable?
 - how to achieve decomposition ?
 - how to exploit arrays: more photons, spatial (and other) diversity

Additional Notes

- Adaptation is cost so problem domain may be defined by fixed features... suboptimal
 - e.g., conventional imaging is example
- Adaptation may also be achieved by over deployment in array
 - e.g., a separate sensor for every question
- Active illumination = both time and space variant
 - e.g., two-pulse ladar, structured illumination

Optical Processing

- Methods of optical projection: volume holography, custom/adaptive refractives, inteferometric, active illumination, obscurations (reference structures)
 - challenges: how to make these adaptive/flexible/programmable?
 - how to optimize photon usage?
 - can flexibility be limited to planes?

Detector Plane Processing

- Nonlinear data aggregation, e.g.
 - Voting/search/selection/WTA, Histogram analysis, max/min/median, sorting, higher order moments... (other global/local signal descriptors).
- Low-latency decisions and feedback
 - Information-theoretic streaming of incremental decisions.
 - The most informative bit of information comes out of the sensor first.
- Temporal processing,
 - Event detections, Timestamps, heterodyne detection...
- Quantization, communication.
- Novel signal utilization strategies for increased SNR, Dynamic Range, measurement prioritization, ...

DARPA Questions

- What are we we trying to do? Extract task-specific information
- How is it done now? Image formation generally precedes image processing and trends are toward ever-increasing sensor resolution.
- What are limitations? Photon efficiency, data load (communications, latency, processing, ...), payload issues,
- What is new that removes limitations and improves performance? Realization that optical transformations can improve the efficiency of sensor.
- Why now? Unmanagable data loads, demonstrated non-traditional imaging, adaptive sensing facilitates agile information extraction,
- Why can it work?
- What is not known? Implementation of tunable optical transformations, theory of optimal constrained search, optimal decomposition, how to balance analog v digital signal conditioning/processing/computing
- If successful what difference will it make? Enables network-centric warfare: improves photon efficiency, manage data load, reduces latency => improving timeliness and reliability of decisions.

Illustrative Example

- Airborne surveillance and target detection.
 - Compute saliency map (iterate through a few adaptation cycles to find out what makes most robust signatures, optical signal selection, polarimetric/phase/spectral bands)
 - Localize the most interesting spots.
 - Interrogate interesting spots by:
 - Adapting the system
 - Invoke another or our sensory better suited for task.